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SECONDARY RADIATION-DRIVEN
THERMAL INSTABILITY

I. INTRODUCTION

Oran, Mariska, and Boris (1982) investigated the stability of a one-dimensional

plasma at temperatures and densities typical of the solar transition region and

corona, using both a linear analysis and non-linear time-dependent numerical sim-

ulations. Under constant pressure conditions with a steady heat source H, some

regions of a plasma cool while other regions are heated. The rate at which this

process occurs depends on the balance of H and the radiative loss rate S. The

radiation loss rate of a plasma, S, varies in a complex way with the mass density

and tempertture. When S increases faster with the mass density than it decreases

with a lowering of the temperature. the cooling regions will tend to condense as

the plasma attempts to maintain pressure balance. This phenomenon is termed

the condensational instability. On the other hand, the hotter regions will expand

and tend to grow hotter as the steady heating (per unit volume) becomes domi-

nant over the radiation cooling process. This runaway temperature effect is usually

called the radiation-driven thermal instability (Priest 19S2). We will use this latter

designation to refer to either process.

Oran, Mariska and Boris started from an isotropic static equilibrium state.

They perturbed this state with single mode disturbances in the velocity field, and

observed that the plasma condensed into one or more cool (lense regions with a hot

tenuous surrounding. The condensations appeared to reach a secondary equilibrium.

Manuscript approved January 21. 1987.
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but they emphasized that they had performed only one-dimensional simulations and

questioned whether their final state might be unstable in two or three dimensions.

We report here on preliminary results of an investigation into the radiation-

driven thermal instability of a one-dimensional secondary equilibrium. Starting

from a one-dimensional secondary equilibrium state, we have performed a series of

non-linear simulations in two-dimensions and found that the secondary equilibrium

is indeed unstable to random two-dimensional perturbations.

In § II we describe the governing equations and numerical method. The com-

putational procedure, which is based on the FAST2D hydrodynamic algorithm, is

the same as that employed by Dahlburg, et al. (1987). In § III we describe the one-

dimensional simulation performed to obtain the secondary equilibrium state. We

augment the description of this system given by Oran, Mariska and Boris (1982) by

describing the energetics of the system. In § IV the results of the two-dimensional

runs are described. We typically see the system move rapidly away from the one-

dimensional secondary equilibrium state. In § V we discuss the results in the cointext

of the upper solar atmosphere. In the appendix we formulate an eigenvalue problem

for infinitesimal disturbances of the secondary equilibrium.

II. FORMULATION OF THE PROBLEM

We consider a compressible, two-dimensional, uniform, fluid medium in Carte-

sian geometry (see Field 1965, § II). The evolution of this fluid is governedI by

the equations of continuity, motion, energy, and state. which are written below in

conservation form:

+"(,v) O. 0,

+ (Pvv)= -P. l
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DE + V (E + P)v -V. (iVT) + H - S(p,T), (ic)

P - - 1)U, (1d)

where: p(x, y, t) = mass density, v(x, y,t) = (u, v, 0) - flow velocity, U(x, y, t)

- internal energy density, E(x, y, t) = total energy density = U(x, y, t) + pIvl2,

P(x, y, t) = mechanical pressure, T(x, y, t) = thermodynamic temperature, ,c(p , T)

- thermal conductivity tensor, H = heating rate, S(p, T) = radiative loss function,

and - = ratio of specific heats = 5/3 for an ideal monatomic gas. For the radiative

loss function, S(p, T), we use the model employed by Oran, Mariska, and Boris

(1982). Periodic boundary conditions are imposed in both spatial directions.

The primary equilibrium state for the system of equations la - ld is given by:

p = p0 = constant, v = 0, U = U0 = constant, and H = S(po, To) = constant.

In this report. we use the same values for these constants as Dahlburg, et aI.. ,,iz..

(1986) po = 3.07x 10- g cn - , U 0 = 4.S5 erg cm - . H = 0.0272 erg cm - s- .

K = 1.14 x 10- 6 T2"s erg cm- l s-' K - ', and To = 7.29 x 10' K. We use this static

equilibrium state to initialize our one-dimensional code.We then perturb this state

and evolve the system in time until a state of secondary equilibrium is achievel.

The numerical nthol used to solve equations la - ld is described in detail 1,y

Dahlburg et al. (1987). Here we give a brief description of the algorithm. Centered

differences are used to discretize both spatial directions. For the two-dimensiomal

simulations reported in this paper, the system is a square region 9.19 x 10' cm

on edge. This size represents one wavelength of the characteristic perturbation

tised by Oran. Mariska. a, l Boris (19S2) for the teuxl,,rat ure anid rIxass ,c(qlitis

under study. The region is divided into a 100 by 100 grid with unifoirmly spaced

intervals of 9.19 x 106 cii. A time-step splitting scheme is Itse(l which separates



the hydrodynamic processes from the thermodynamic processes. The hydrodynamic

terms are advanced in time by the flux-corrected transport method, with a predictor-

corrector method employed to time-center the source terms. For time advancing the

thermodynamic terms, an iterative alternating direction implicit scheme is used.

III. ONE-DIMENSIONAL RESULTS

In this section we describe the results of the one-dimensional run performed

to obtain the secondary equilibrium state. To run the two-dimensional code in this

one-dimensional mode we use 4 uniform cells in the y direction, with Ay = Ax.

No variation in y is permitted. We perturb the static equilibrium state described

in § II with random perturbations in the x-velocity component and allow the sys-

tem to evolve in time, where the system length is given by L. = 9.19 x 108 cm.

We terminate the run when we are satisfied that a state of secondary ecuilibriuni

has been achieved, i.e., when the system has stabilized at a different state. Our

simulation differs from that of Oran, Mariska, and Boris in two respects. First.

we use periodic boundary conditions. Second. we use random initial conditions in

the velocity field so that the system can traverse as wide a range of phase space

as possible. Although our simulation differs in some respects from those of Oran.

Mariska, and Boris (1982), our results appear to confirm theirs.

The evolution of the system as a whole is represented by the internal energy.
L.

Figure 1 shows the internal energy, f U dx, as a function of time. This, and all si ib-
0

sequent global quantities, is defined per unit length in the z direction. The internal

energy remains approximately constant, near the primary equilibrium value, as long

as the perturbations remain small. When the perturbations attain finite amplitude.

as evidenced by the rapid growth in the kinetic energy. the internal energy drops

precipitously. Some growth due to reheating is seen. and then the internal energy

remains approximately constant for approximately 900 seconds. We regard lhis

constant behaviour of the global quantities as sufficient evidence that the systeuli
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has attained a state of secondary equilibrium. Further evidence that a secondary

equilibrium state has been achieved is shown in figure 2, which shows the energy
L. to

deficit, Ed = f f [S(p, T) - H]dx dt, as a function of time. The energy deficit re-
0 0

mains approximately constant for almost 700 s, showing that the heat energy input

and the radiation enrgy losses are about equal in the vicinity of the primary equi-

librium. This equilibrium is destroyed by the formation of condensates, which are

extremely effective radiators during their formation phase. After some time a state

of secondary equilibrium is achieved in which the spatially varying radiation energy

losses equal the heat energy input. The maintenance of this equilibrium depends

on thermal conduction and convection for the transport of heat energy to those

locations which are radiating energy most efficiently.

Figure 3 shows the niass density profile, p(x) at secondary equilibrium. Figure

.4 shows the corresponding temperature profile T(x). Ve see that after saturation.

a cool, dense region is able to exist in equilibrium with a hot, rare region. The max-

imum mass density in the condensed region is 4.5 x 10- 12 g cm - 3 . at a temperature

of 4.2 x 10' K. The minimum mass density in the rarefied region is 1.1 x C-3o°

cm - 3 , at a temperature of 1.7 x 106 K.

IV. TWO-DIMENSIONAL RESULTS

In this section we determine numerically whether the one-dimensional equilib-

rium state described in § III is subject in two-dimensions to secondary radiation-

driven thermal instabilities. We choose LY = L,.

We here describe one run which is representative of those which we performed

in detail. Figure 5 is a vector plot of the initial velocity field perturbation. To

avoid cluttering the plot. the velocity field is represented on a reduced set of points.

The perturbed velocity field is determined by the method used by Dahlburg, et
Lr LY

al. (1987). Figure 6 shows the kinetic energy, 1 f f p IV 2 dx dy, as a function
0 0

of time. Starting from an initial value of about 5.2 x 10" ' ergs there is at first a
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very rapid drop. Then after a slight rise, the kinetic energy drops for a period of

about 500 s as it flows into other forms of energy available to the system. The rate

of decay decreases steadily and the kinetic energy appears to approach a limiting

value of about 1.1 x 1016 ergs.

L, Ly
Figure 7 shows the internal energy, f f U dx dy, as a function of time. Starting

0 0

from as initial value of about 3.45 x 1018 ergs, this is seen to decrease at an almost

constant rate for about 180 s. Subsequently, the rate of decay decreases. At the

end of the simulation, t = 727 s, the internal energy is equal to 2.2 x 1018 ergs.

L. Ly t.
Figure 8 shows the energy deficit, Ed = f f f [S(p, T) - H] dx dy dt, as a func-

0 0 0

tion of time. This represents the radiation energy reduced by the amount of heating

energy. Initially this quantity is zero, representing the thermodynamic equilibrium

of radiation energy losses and constant heat energy input. It rises steadily from

zero at a rapid rate for about 180 s. After this time, the rate of increase appears

to decline. At the final time the energy deficit is equal to 1.3 x 1018 ergs. The

rate of increase of the energy deficit is consistent with the rate of decrease of the

internal energy. This suggests that radiation is produced mainly at the expense of

the internal energy, and that the kinetic energy is maintained by the heating source.

This also suggests that the most prominent effect produced by the perturbing of

the system is the production of more radiated energy.

Figure 9 is a contour plot of the mass density at the final time. It shows

considerable concentration of mass in 2 regions of the plot. The mass density

appears to be kinking, with high density regions forming at the extremities of the

kink. The maximum mass density is about 8.6 x 10- 13 g cm - 3. while the minimum

value is 6.2 x 10- 1 g cm - 3 . These values differ by a factor of about 140. Figure 10

is a contour plot of the temperature at the same time. The kinking is also apparent

in the temperature field, but it appears to retain the bifurcated character of the

secondary equilibrium. The maximum temperature is about 1.6 x 106 K, while the
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minimum value is 1.2 x 10" K. These values differ by about the same amount as the

mass density maximum and minimum. Figure 11 is a vector plot of the final velocity

field. A very active flow region is visible at the lower right. The twisting action

implies high vorticity, which should promote the formation of a two-dimensional

state. Figure 12 is a contour plot of the dilation factor, or divergence, of the fluid.

A positive dilation factor signifies fluid rarefaction, and a negative dilation factor

signifies fluid compression. This figure shows that a rarefaction zone develops ahead

of the high mass density regions, while a condensing region forms behind this zone.

When very large amplitude perturbations were attempted, say with 25 times

the energy of those described, the time-step, which is adjusted for each step of the

simulation in response to the hydrodynamic and thermal conduction time scales (see

Dahlburg et al. 1987) , became so small that even after 5000 steps of the simulation

the total elapsed time was less than half a second. Presumably in this case the high

characteristic velocity produced results in an extremely short hydrodynarnic time

scale.

V. DISCUSSION

In this investigation we have seen the radiation-driven thermally unstable fluid

exhibit a tendency to move away from a one-diniensional state toward a two-

dimensional state. In the absence of any restoring force. it is clear that the fluid

will not return to its initial state. Unfortunately, due to the high cost of tleis iii-

merical simulations we were not able to extend our calculations farther in time and

so determine the long-time state of the fluid. The high cost results from the severe

time-step restriction imposed by the thermal conduction time-scale. Vve conjecture

that eventually the sheet will break up.

Analysis of this phenomenon is difficult clue to the high order anI exteiene 1l,-

linearity of the governing system of partial differential equations. In the apiiiilix
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we take a first step in analysis by formulating an eigenvalue problem for the linear

stability of the secondary equilibrium.

In practice it is difficult to observe the evolution of un. table fluids in the solar

corona and transition region because it has not been possible yet to achieve the

necessary spatial and temporal resolution in the observing instruments. Recently,

faint superspicules were reported by Breuckner et al. (1986). These superspicules

were seen on the disk of the sun close to the limb, and they appeared to form in space

rather than to have been ejected upward from the surface. Their available temporal

resolution, at best 20 s, but generally about 60 s, would not permit Breuckner et

al. to observe the evolution of this short-lived phenomenon (as little as 180 s).

They did see the superspicules flex and bend in the course of their development.

These superspicules could conceivably condense out of the corona as a result of

some velocity perturbation arising from the turbulent nature of the surrounding

medium. Since the corona is very tenuous, the amount of mass and consequently

the intensity of the radiation from these condensations would be quite small. This

would explain their very faint nature.

Zirin (1966) has stated that "loops and coronal rain typically occur as the

aftermath of flares and surges". It is not inconceivable that these phenomena also

could arise from the velocity perturbations produced by flares which then produce

condensations observed as loops and coronal rain.

The work performed here can be extended by changing the initial conditions. or

the magnitude of the perttirbations, or simply by adding" the force of gravity into the

calculation to see the effect on the results. A more difficult extension would be to

include the effects of magnetic fields to simulate more realistically the magnetofluids

in the transition region and corolla of the sun. Potentially, this program iiiighit he

applied to a variety of phenomena in the sun or elsewhere in the universe to aid in

the interpretation of the various phenomena which are observed ( see Field 1065).

8

-,--. " , , , . , . , ." . -" " , . ' -.- ." . " " ' - .- - " ' " -



ACKNOWLEDGEMENTS

We thank Dr. J. T. Karpen and Dr. J. M. Picone for helping to acquire the

one-dimensional results. This work was performed while L. P. G. was a faculty

participant at the Naval Research Laboratory under the American Society for En-

gineering Education Summer Faculty Program. R. B. D. was sponsored by the

National Aeronautics and Space Administration Solar Terrestrial Theory Program

and by the Office of Naval Research. The numerical simulations reported here were

partially supported by a generous grant of computer time on the NRL CRAY-XMP

from the director of research of the Naval Research Laboratory.

REFERENCES

Breuckner, G. E., Bartoe, J. -D. F., Cook, J. IV., Dere. K. P., and Socker, D. G..

Presentation Release: "HRTS Results from Spacelab 2". 1986. Ap. J.. 142.

531.

Dahlburg. R. B.. DeVore. C. R.. Picone. J. M., Mariska. J. T.. and IKarpen..1. T..

1987, Ap. J., in press.

Field, G. B. 1965, Ap. J., 142. 531.

Oran. E. S., Mariska, J. T., and Boris, J. P. 1982. Ap. J.. 254. 349.

Priest. E. R. 1982 Solar Magnetohydrodynarnics ((Dordrecht: Reidel).

Zirin, H. 1966. The Solar Atmosphere. (Waltham: Ginn Blaisdlell).

[-9



APPENDIX

In this appendix we derive a generalized eigenvalue problem which determines

the linear stability properties of the nonuniform, secondary equilibrium. We first

rewrite the governing equations la - 1c, with the pressure eliminated by means of

the equation of state ld:

8P +(Ala)

a-q/ + V. (1FV) -- (--1)VU, (Alb)

at + V (Uv) = KCoV. (TIVT) + H - p (p,T). (Alc)

In this formulation we time advance the internal energy, rather than the total energy.

The variable I' is the momentum, pv, and (p, T) =S (pT)

Wve first linearize equations Ala - Ale about the secondary equilibrium, ?.C..

we allow the field variables to vary as:

p = MY~) + P1 (X, Y t), (-.12o)

v = v1 (X, y, t), (A2b)

IF = i(x,yt), (.42c)
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U = Uo(y) + UI(x, , t), (A2d)

T = To(y) + Ti(x, y,t), (A2e)

where the subscript 0 indicates the secondary equilibrium field values, and the

subscript 1 indicates the perturbed field values.

Substituting equations A2 into equations Al and ignoring terms which are

quadratic in the perturbed quantities, we have to first order:

O +V .qf = 0, (A3a)

C) - 1)VU, (A3b)

-- [UOvI]

-(A3c)

av. (To!,VTI) - P" T' - PO( t)(o- [I - To-P)

The quantities and T 2- are evaluated for the equilibriumii stite. The

perturbed temperature, T1, has been eliminated by the first order equation of state

in the radiation loss term. We have not evaluated T, in the thermal conduction

term for notational simplification.

After some more algebra:

Op _ Okgi,, OkPY, ( .440
ot Ox ay "

11



=~P - - -u (A4b)

a, _ 14U (A4b)
aat

51 T OyI -- dy
(A4d)

KO (T,, _VT) P0( )UP-0 (A

where we have dropped the 1 subscripts. This is a set of linear partial differential

equations for infinitesimal disturbances to the secondary equilibrium.

IWe now perform a normal mode analysis, assuming that the variation of the

perturbed quantities is given by:

f(x, y, t) = f'(y)e(ax -it (A3)

where a is defined to be the x perturbation wavenumber. and ,. is the complex

growth-rate of the disturbance.

If we define D = d ,then upon substitution (and ignoring the primed super-

scripts) we have the following set of ordinary differential equations:

-ip =-i - Dk -4(A6a)

-icIJ,. = -io(1 - 1)U. (.4Gb)

12



-iwqFy = -('I - 1)DU, (A6c)

-iwU = - Uo(iau + Dv)

"+ c(DToI)DT + xoT2(D2T - a2 T) (A6d)

We have used the the variables %P,,, T. and T to simplify the mathematics. We

now eliminate them to reduce the number of variables to the number of equations.

zapou + poDv = iwp, (A7a)

i a(- - 1)U = i";oI, (.471)

- 1)DU = i/'poV. (.47c)

PO ~ ~ Zi +1) POt, 1 + in U,) I + 7iO D - (DUo)]P +

(.47,I)

+ [PO( Tpo) + No (P i

In equation A7d we use the following operators:

0 a2TI I- (DT, )(1D-(DT ,- )Di 7-To7 D 1 ) + 2D'j )D+ I D

AS'

13



4, 01 2T.1- + (DTO )( 2D + (DT0 )(D(2 ) + T [(D2 ( 2 ) + 2(D( 2 )D + ( 2 D 21

(A~b)

where (i an d (2 = T.
PO a

Equations A7 have the form of a generalized eigenvalue problem:

Ax = wBx. (AO)

The eigenvector x p ( uv U )T, where the superscript T denotes the transpose

of the vector x. The eigenvalue is w. the complex growth rate.

14
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